Assistant Professor
Computer Science
University of Maryland, Baltimore County
NEW !!! PPR Seminar
Teaching
CMSC 691 Computer Vision [F23]
Quick Links
UMBC CSEE
Meyerhoff Scholars
Center for Women in Technology
Undergraduate Research Opportunities
UMBC Stats & Rankings
Office Hours
W 1400--15:30; ITE 214
Upcoming Travel
Oct 25-27, AAAI Fall Symposium 2023
Nov 06-09, CoRL 2023
Dec 11-16, NeurIPS 2023
Feb 21-26, AAAI 2024
I am a computer vision researcher working towards the design of robust and reliable systems that can understand the visual world. My research draws inspiration from principles of perception, communication, learning, and reasoning.
I received my Ph.D. from Arizona State University where I was advised by Yezhou Yang and Chitta Baral, M.S. from Carnegie Mellon University where I worked with Aswin Sankaranarayanan, and B.E. (Honours) from Birla Institute of Technology and Science. During my graduate studies I worked with wonderful collaborators at Lawrence Livermore National Laboratory, Microsoft Research, and Snap Research.
Join the Group! I am recruiting BS/MS/PhD researchers to join me at UMBC in Fall 2023. Please use this form to apply! See FAQ for more.
Nov 2023 | Started the PPR Seminar at UMBC |
Nov 2023 | Invited Talk at UMD PRG Seminar Series |
Sep 2023 | Joined CWIT as a mentor |
Aug 2023 | Moved to Maryland after 5 years of "it's a dry heat" |
Jun 2023 | Organized O-DRUM 2023 at CVPR
(Workshop on Open-Domain Reasoning Under Multi-Modal Settings) |
Apr 2023 |
Defended my Ph.D !!!
Awarded the ASU Engineering Graduate Fellowship, ASU SCAI Doctoral Fellowship, GPSA Outstanding Research Award, and GPSA Outstanding Mentor Award. |
Feb-Apr 2023 | Invited Talks on "Reliable Semantic Vision" at
|
Jan 2023 | Organized SERUM Tutorial at WACV 2023
(Tutorial on Semantic Data Engineering under Multimodal Settings) |
Textual inversion models have the potential to learn novel concepts from a small number of example images. We quantify this concept learning ability with ConceptBed: a dataset that contains 284 unique visual concepts and 33K concept compositions, and CCD (Concept Confidence Deviation): an evaluation metric uses the confidence of oracle concept classifiers to measure the alignment between generated images and concepts contained in ground truth images.
ABA draws on the strengths of adversarial learning and Bayesian neural networks to guide the generation of diverse data augmentations — these synthesized image domains aid the classifier in generalizing to several types of domain shift including style shift, subpopulation shift, and domain shift in the medical imaging setting. ABA outperforms all previous state-of-the-art methods, including pre-specified augmentations, pixel-based and convolutional-based augmentations.
This dissertation contributes to the reliability of machine learning models from several perspectives including the development of robust training algorithms to mitigate the risks of such failures, construction of new datasets that provide a new perspective on capabilities of vision models, and the design of evaluation metrics for re-calibrating the perception of performance improvements.
Knowledge retrieval with multi-modal queries, i.e., queries containing information split across image and text inputs, a challenging task that differs from previous work on cross-modal retrieval. A new dataset called ReMuQ, a new pretraining task for learning knowledge retrieval with multimodal queries, and a retriever model "ReViz" that can directly process input text and images to retrieve relevant knowledge in an end-to-end fashion without being dependent on intermediate modules such as object detectors or caption generators.
A data poisoning attack that confounds ML models without any manipulation of the image or label, achieved by simply leveraging the most confounding natural samples found within the training data itself. We show the efficacy of this novel attack in offline as well as continual learning (CL) settings in image classification, thereby exposing a previously undetected vulnerability of image classifiers.
We report a surprising finding that, although recent state-of-the-art T2I models exhibit high image quality, they are severely limited in their ability to generate multiple objects or the specified spatial relations such as left/right/above/below. We introduce a metric called VISOR to quantify spatial reasoning performance. VISOR can be used off-the-shelf with any text-to-image model. We construct and make available SR2D, a dataset which contains sentences that describe spatial relationships (left/right/above/below) between a pair of commonly occurring objects.
ALT discovers diverse and adversarial transformations using an image-to-image neural network with learnable weights. ALT improves the state-of-the-art single domain generalization performance on three benchmarks and is significantly better than pixel-wise adversarial training and standard data augmentation techniques.
Although the imaging pipeline is unable to capture many physical properties of objects (eg. mass and coefficient of friction), these properties can be estimated by utilizing cues introduced by collisions. We introduce a new dataset (CRIPP-VQA) for reasoning about the implicit physical properties of objects from videos. The dataset contains videos of objects in motion, annotated with hypothetical/counterfactual questions about the effect of actions (removing/adding/replacing objects) and questions about planning (performing actions to reach a goal).
In this paper, we introduce a benchmark for covariate shift detection (CSD), that builds upon and complements previous work on domain generalization. We find that existing novelty detection methods designed for OOD benchmarks perform worse than simple confidence-based methods on our CSD benchmark. We propose Domain Interpolation Sensitivity (DIS), based on the simple hypothesis that interpolation between the test input and randomly sampled inputs from the training domain, offers sufficient information to distinguish between the training domain and unseen domains under covariate shift.
Natural Language Inference (NLI) under three low-data settings (with missing labels; with missing labels and hypothesis; and with missing labels, hypotheses, and premises). A procedural data generation approach that leverages a set of sentence transformations to collect PHL (Premise, Hypothesis, Label) triplets for training NLI models, bypassing the need for human-annotated training data. State-of-the-art results under all three "unsupervised" settings.
SDRO: a distributed robust optimization method that operates with linguistic transformations of sentence inputs, SISP: a suit of semantics-inverting (SI) and semantics-preserving (SP) linguistic transformations, and an ensembling technique for vision-and-language inference.
In this work, we conduct a comprehensive study of common data modification strategies and evaluate not only their in-domain and OOD performance, but also their adversarial robustness (AR). This work serves as an empirical study towards understanding the relationship between generalizing to unseen domains and defending against adversarial perturbations.
We present a debiased dataset for the Person Centric Visual Grounding (PCVG) task. For instance, in many cases the first name in the sentence corresponds to the largest bounding box, or the sequence of names in the sentence corresponds to an exact left-to-right order in the image). The debiased dataset offers the PCVG task a more practical baseline for reliable benchmarking and future improvements.
We seek to improve information retrieval (IR) using neural retrievers (NR) in the biomedical domain, using a three-pronged approach. (1) a template-based question generation method, (2) two novel pre-training tasks that are closely aligned to the downstream task of information retrieval, (3) the ``Poly-DPR'' model which encodes each context into multiple context vectors.
VQA models trained with two additional objectives: object centroid estimation and relative position estimation, lead to improved performance on spatial reasoning questions (in GQA) in fully supervised and few shot settings as well as improved O.O.D. generalization.
We show that models can be trained without any human-annotated Q-A pairs, but only with images and associated text captions. Our experiments suggest gains on benchmark with shifted priors (VQA-CP) over baselines which use full supervision from human-authored QA data.
Scene completion from sparse and incomplete label maps. `Halluci-Net' is a 2-stage method that captures the object co-occurrence relationships, to produce dense label maps from incomplete labelmaps and object boundaries, for image synthesis.
Unsupervised Reading Comprehension method that operates directly on a single test passage. Synthetic QA pairs are generated from the passage, and models are trained on these. When a new human-authored test question appears, models infer answers better than previous unsupervised methods.
An adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to attributes-space. Studies robustness to semantic shifts that are beyond L-p norm perturbations, on 3 types of naturally occurring perturbations — object-related shifts, geometric transformations, and common image corruptions.
MUTANT is a training paradigm that exposes VQA models to perceptually similar, yet semantically distinct mutations of the input image or question. We use a pairwise consistency loss between answers to original and mutant inputs as a regularization, along with an answer embedding NCE loss. MUTANTimproves generalization of VQA models under Changing Priors.
Actions in videos are inherently linked to latent social and commonsense aspects. We present the first work on generating commonsense captions directly from videos, to describe latent intentions, attributes, and effects of humans in videos. Additionally we explore the use of open-ended video-based commonsense question answering (V2C-QA) as a way to enrich our captions.
VQA models struggle at negation, antonyms, conjunction, disjunction! We show a capability of answering logically composed questions with our novel modules and datasets, while retaining performance on VQA data.
Given two images (source, target) with different object configurations, what is the sequence of steps to re-arrange source to match target? For this reasoning task, our modular approach that contains a visual encoder and an event-sequencer/planner, and exhibits inductive generalization.
Website theme inspirations: Alane Suhr, Stephen MacNeil, Jon Barron